زندگی نامه دیوید هیلبرت

دیوید هیلبرت در 23 ﮊانویه ی سال 1862 در شهر کونیگسبرگ ،شهری در روسیه ی فعلی، متولد شد. وی ریاضیدان آلمانی و یکی از مشهورترین ریاضیدانهای قرن نوزدهم و همچنین، اوایل قرن بیستم. او یکی از تأثیرگذارترین ریاضی‌دانان در گسترش و پیدایش مکانیک کوانتومی و حتی نظریه نسبیت می‌باشد. از کارهای دیگر او ، بنیان‌ریزی و گسترش آنالیز تابعی است.

هیلبرت در سال ۱۸۸۴ از دانشگاه کونیگسبرگ درجه دکتری گرفت و قریب ۱۰ سال را به تدریس در آن دانشگاه گذراند. سپس در ۱۸۹۵ به استادی دانشگاه گوتینگن رسید و تا آخر عمر در این شهر زیست.

تلاش ها و دستاوردها

هیلبرت یکی از مؤسسان ریاضیات قرن بیستم و در بسیاری جهات، به‌وجود آورنده مکتب صورتگرایی ریاضیات است که در ریاضیات محض این قرن نفوذ زیادی داشته‌است. یکی از دستاوردهای اساسی او در صورتگرایی، مبناهای هندسی (Foundations of Geometry) اوست، که برخلاف مبانی آکسیوماتیکی نسبتاً شهودی‌تر اقلیدس، در بنا کردن هندسه بر مبنای آکسیوماتیکی محض مطرح شده ‌است.

یکی از مهم ترین کارهای هیلبرت در صورت بندی اصل های هندسه ی اقلیدسی (و به طور کلی هندسه ی اصل موضوعی) است. وی کتاب «مبانی هندسه» را در سال 1899 منتشر کرد که هدف آن مربوط کردن اصل های موضوعه ی هندسه به اصل حساب بود. وی در این کتاب به شرح نتیجه های مطالعات خود در این زمینه پرداخته است.

هیلبرت اغلب به عنوان ریاضیدانی مطلقاً محض شناخته می‌شود، اما وی رئیس سمینار فیزیک اتمی مشهور گوتینگن نیز بود، که تاثیر عظیمی بر توسعه نظریه کوانتوم داشت.

نگاهی به 23 مسئله هیلبرت

در سال ۱۹۰۰ میلادی دیوید هیلبرت در دومین کنگره بین المللی ریاضی دانان در پاریس در یک سخنرانی از مسائل ریاضیات سخن گفت و پس از آن هرمن ویل (Herman Weyl) درباره آن مسائل چنین گفت: «هرکس این مسائل را حل کند به کلاس افتخاری ریاضیدانان وارد می شود.» در همین سال هیلبرت به یک ریاضیدان برجسته در آلمان تبدیل شد. او طی این سخنرانی ۲۳ مسئله در رابطه با ریاضیات را عنوان نمود که عناوین آن به شرح زیر هستند:

۱- مسئله کانتور برای عدد کاردینال پیوستار
۲- سازگاری اصول موضوعه ی حساب
۳- تساوی حجم دو چند وجهی با مساحت قاعده و ارتفاع برابر
۴- مسئله خط مستقیم با کوتاهترین فاصله بین دو نقطه
۵- مفهوم لی (Lie) از گروه های پیوسته از تبدیلات بدون فرض مشتق پذیری توابع تعریف کننده ی گروه ها
۶- ارائه ساختار اصل موضوعی ریاضیات برای فیزیک
۷- گنگ و متعالی بودن اعدادی معین
۸- مسئله اعداد اول، توزیع اعداد اول و فرضیه ی ریمان
۹- اثبات کلی ترین اصل تقابل در هر میدان
۱۰- آیا یک الگوریتم برای تعیین حل پذیری معادلات دیوفانتی وجود دارد.
۱۱- ارائه ی یک نظریه برای فرم های درجه دوم با ضرایب عددی جبری
۱۲- تعمیم قضیه ی کرونکر برای میدان های آبلی به هر ساختار جبری گویا
۱۳- ناممکن بودن حل معادلات کلی درجه ۷ توسط توابعی تنها از دو متغیر
۱۴- اثبات متناهی بودن دستگاههای کامل و مشخص از توابع
۱۵- ارائه ی مبانی دقیق از حساب شمارش شوبرت (Schubert)
۱۶- مسئله توپولوژی منحنی ها و رویه های جبری و تعیین کرانی برای تعداد سیکل های حدی دستگاههای چند جمله ای در صفحه
۱۷- نمایش فرم های مشخص توسط مربع جملات
۱۸- ساختن فضاهای اقلیدسی با تعداد متناهی گروههای چند وجهی
۱۹- آیا جواب های مسائل منظم در حساب تغییرات لزوماْ تحلیلی اند؟
۲۰- ارائه ی یک نظریه ی کلی برای مسائل شرط مرزی
۲۱- اثبات وجود معادلات دیفرانسیل خطی با گروه مونودرامی از پیش تعیین شده
۲۲- یکنواخت سازی روابط تحلیلی توسط توابع اتومورفیک
۲۳- توسعه ی بیشتر روش های حساب تغییرات.

که از این میان تنها مسئله ۱۶ ام هیلبرت تاکنون لاینحل باقی مانده است..

مرگ او

هیلبرت در 14 فوریه‌ی سال 1943 در شهر گوتینگن (Gottingen) آلمان چشم از جهان فرو بست.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

این قسمت نباید خالی باشد
این قسمت نباید خالی باشد
لطفاً یک نشانی ایمیل معتبر بنویسید.